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1. Introduction

One of the principal aims of quantum gravity is the study and possible resolution of space-

time singularities. String theory is a very prominent candidate for a theory of quantum

gravity and it provides several tools to deal with quantum corrections. However even in

the context of string theory the analysis of singular or time-dependent backgrounds is still

a very subtle and difficult problem, both from a conceptual and a technical point of view.

One of the best established approaches is to investigate the properties of backgrounds

whose non-linear σ-models are exact conformal field theories, since they represent exact

solutions to the string equations of motion to all orders in the string tension α′.
A first class of models is represented by the Lorentzian orbifolds of flat space [1].

Despite their apparent simplicity, the dynamics of these models and the nature of their

singularities is still poorly understood [2 – 6]. A second class of models is provided by

gravitational waves [7]. In this case the presence of a null isometry allows to prove that the

σ-model is conformally invariant and to study some of its features in the light-cone gauge,

as done for instance in [8]. Sometimes it is also possible to identify the chiral algebra of the

underlying CFT and to solve the model in a covariant way. The first example of this type

was discovered by Nappi and Witten [9] who showed that the WZW model based on the
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Heisenberg group H4 coincides with the σ-model of the maximally symmetric gravitational

wave in four dimensions. The exact solution of this model was given in [10, 11].

The H4 WZW model is also a particular example of a third large class of exact

curved backgrounds of string theory, the WZW and coset models based on non-compact

groups [12 – 14]. For several years the lack of a proper understanding of the representa-

tion theory of the corresponding affine algebras and the technical difficulties associated

with the computation of the correlation functions of a non-compact CFT, allowed only

a semiclassical analysis of the geometries of these models, based on the gauged WZW

Lagrangian [15]. Two prominent examples of this kind of constructions are the two-

dimensional black hole [14] and the cosmological Nappi-Witten space-time [16]. The situ-

ation changed during the past few years, when the structure of the SL(2, R) WZW model

and of the H+
3 model were finally clarified [17 – 19] and the CFTs of some of their cosets

were analysed in more detail [20, 21]. Although all these models can only be regarded as

toy models for realistic singularities, they provide a very convenient framework to explore

the behaviour of strings in situations that, even if still unfamiliar, are likely to display new

and interesting physical effects.

In the present paper we initiate a systematic study of the cosets of the Heisenberg group

H4. There are several reasons to single out these models. First of all the corresponding

non-linear σ-models describe the propagation of strings in interesting curved space-times.

They were first considered in [22 – 25] but at that time, as in the case of SL(2, R) and its

cosets, only a semiclassical analysis was possible. We can now exploit the exact solution

of the H4 WZW model [10, 11] to provide a complete analysis of the underlying CFTs

and in particular to determine the operator content and the couplings of all the models.

Moreover the Heisenberg group is non-compact and non-semisimple. Consequently, the

structure of its cosets is remarkably rich and is worth investigating in order to gain a

better understanding of the representation theory of this kind of chiral algebra. This is

particularly evident in the case of the diagonal cosets [24, 26] but also for the simpler

abelian cosets discussed in this paper.

The abelian cosets of the Heisenberg group provide a unifying framework for the study

of several time-dependent or singular three-dimensional space-times. They fall into two

main classes corresponding to two inequivalent u(1) subalgebras. The models in the first

class [23] have either Lorentzian or Euclidean signature. In the first case they are T-

dual to the conical space-time generated by a point source in three dimensions [27] while

in the second case they coincide with the Melvin model [28]. The models in the second

class [22] have a null isometry and describe a gravitational wave with an infinite sequence of

singularities. It is interesting to note that these two classes, which arise from inequivalent

gaugings of H4, are related by a singular limit. In terms of its action on the coordinates, this

limit is a Penrose limit that leads from the point-particle space-time to the gravitational

wave. It is possible to obtain a third class of new models by an asymmetric construction that

involves simultaneously the two inequivalent u(1) subalgebras. The resulting backgrounds

can again be interpreted as limits of the conical space-times.

We also show that the second class of cosets, when the spatial direction transverse

to the wave is compactified on a circle, reduces in a suitable limit to the null orbifold [3]
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and therefore provides a new framework for the study of the singularity of this model and

its possible resolutions. It is worth mentioning that the fact that the three-dimensional

geometries described by the abelian cosets of the Heisenberg group are T-dual to orbifolds

of flat space is not surprising. In the free-field realization of the H4 current algebra [22], the

primary fields are essentially twist fields. From this point of view the affine algebra simply

provides a very efficient tool for organising the spectrum of the model and for computing

its correlation functions [10].

Exploiting the underlying chiral algebra, we determine the operator content of all these

models. This provides additional evidence for the equivalence of the abelian H4 cosets with

the three-dimensional backgrounds discussed above. As an example we show in detail how

the partition function of the Melvin model [35 – 38] can be expressed in terms of coset

characters. Moreover we show that the abelian coset that describes the three-dimensional

wave is an ordinary CFT. Hence the logarithmic CFT that in [39] was conjectured to arise

from a contraction of the SU(2) parafermions does not seem to be directly related to this

geometric background.

Finally the knowledge of the three- and four-point amplitudes of the H4 model [10]

makes in principle also the dynamics of these backgrounds accessible to a detailed investi-

gation, at least at tree level in the string coupling gs. We explain how to evaluate a generic

amplitude for the cosets and then compute explicitly some three-point couplings, leaving

a more complete discussion and the analysis of four-point amplitudes to future work.

The plan of the paper is as follows. In section 2 we introduce our conventions and

review the geometry of the Nappi-Witten gravitational wave. In section 3 we classify the

possible U(1) subgroups of H4 and discuss the resulting abelian cosets emphasizing their

relations with the Melvin model, the conical space-times and the null orbifold. In section 4

we determine the coset characters and the operator content of our models. In section 5

we explain how to evaluate the correlation functions and present the calculation of some

three-point couplings. An appendix summarizes our conventions and useful information

regarding the representation theory of the affine Heisenberg algebra.

2. The maximally symmetric plane wave

The WZW model based on the Heisenberg group H4 describes the propagation of a string

in a homogeneous Lorentzian space which is, as first noticed in [9], a gravitational wave

supported by a non-trivial flux Hµνρ of the two-form field Bµν . Gravitational wave metrics

are usually presented in Brinkmann or Rosen coordinates and in our case we have

ds2
b = 2dudvb −

ρ2

4
du2 + dρ2 + ρ2dχ2 , Huρχ = −ρ , (2.1)

ds2
r = 2dudvr + sin2(u/2)(dx2

1 + dx2
2) , Hux1x2 = − sin2 u

2
. (2.2)

For the analysis of the coset models two additional coordinate systems will be particularly

useful

ds2
1 = 2dudv1 − (a1da2 − a2da1)du + da2

1 + da2
2 , Hua1a2 = 1 , (2.3)

ds2
2 = 2dudv2 + dx2 + dy2 + 2cos udxdy , Huxy = sin u . (2.4)
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One can pass from one coordinate system to the other using the transformations

a1 = x + y cos u , a2 = y sin u , v1 = v2 +
xy

2
sinu , (2.5)

ζ = eiu/2(a1 − ia2) , vb = v1 , (2.6)

ζ = xeiu/2 + ye−iu/2 , vb = v2 +
xy

2
sin u , (2.7)

ζ = (x1 + ix2) sin u/2 , vb = vr −
x2

1 + x2
2

8
sin u , (2.8)

where ζ = ρeiχ. The action of the non-linear σ-model associated with this gravitational

wave coincides with the action of the WZW model of the H4 group. The previous four

coordinate systems correspond to the following four parametrisations of the group elements

g1 = ea1P1+a2P2euJ+v1K , g2 = exP1euJeyP1+v2K , (2.9)

gb = e
u
2
Je

ζ̄
2
P−+ ζ

2
P+

e
u
2
J+vbK , gr = e

x2P1+x1P2
2 euJe−

x2P1+x1P2
2

+vrK . (2.10)

Here the anti-hermitian operators P1, P2, J and K are the four generators of the Lie algebra

of the Heisenberg group and satisfy the commutation relations

[P1, P2] = K , [J, P1] = P2 , [J, P2] = −P1 . (2.11)

Further details on H4 and its representations are collected in appendix A.

The H4 WZW model was completely solved in [10, 11], where the three- and four-

point correlation functions were computed for bulk and boundary vertex operators with

maximally symmetric boundary conditions. In this paper we perform a similar analysis for

the abelian cosets of H4 [22, 23]. Before studying the underlying coset chiral algebras in

detail, we discuss their geometric interpretation which relies on the Lagrangian formulation

of the gauged WZW models [15].

3. The abelian cosets of the Heisenberg group

To construct an abelian coset of the maximally symmetric plane wave, we have first to single

out a specific direction in the Lie algebra of H4. This direction, by the non-compactness

of the group manifold, can be either time-like, space-like or null. Moreover the subgroups

for the left and right action of U(1) on H4 can be chosen almost independently. Let us

consider two embeddings ǫL,R of a u(1) algebra with generator Q into the H4 Lie algebra.

If the two embeddings satisfy the constraint

〈
ǫL(Q)ǫL(Q)

〉
=

〈
ǫR(Q)ǫR(Q)

〉
, (3.1)

where the brackets denote a fixed invariant bilinear form on the H4 Lie algebra, the gauge

transformation

g 7→ es ǫL(Q)ge−s ǫR(Q) , (3.2)

is anomaly free and leads to a consistent gauged WZW model [15]. From the form of the

gauge transformation it is clear that the coset model only depends on the conjugacy classes
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of ǫL(Q) and of ǫR(Q), since even independent left and right inner automorphisms simply

result in a reparametrisation of the group element. Consequently there are two main classes

of abelian cosets of the H4 WZW model.

The first class consists of all the models for which both ǫL(Q) and ǫR(Q) contain

the generator J . In this case the u(1) subalgebra can be brought to a standard form by

conjugation and it is generated by a linear combination of J and K

ǫL(Q) = αJ + βK , ǫR(Q) = ᾱJ + β̄K . (3.3)

The embeddings are specified by four real parameters subject to the relation αβ = ᾱβ̄, so

that the gauging is anomaly free. Without loss of generality we can choose 2αβ = ξ where

ξ = ±1, with the two values of ξ corresponding to different choices for the signature of the

embedded U(1). As we will see in the next subsection, the coset models with ξ = 1 coincide

with the conical space-times associated with a particle in three dimensions while the coset

models with ξ = −1 lead to the Melvin model. When one of the parameter in eq. (3.3)

vanishes, the embedded U(1) is null. The corresponding coset models are extremely simple

since they are flat and two-dimensional, although their algebraic construction presents a

few subtleties [31]. The Lagrangian description of the models with α = ᾱ and α = −ᾱ,

which correspond respectively to the vector and axial gauging of the u(1) current, was first

considered in [23]. Let us note that the vector and the axial gauging are not related by an

inner automorphism.

The second class consists of all the models for which neither ǫL(Q) nor ǫR(Q) contain

the generator J . Without loss of generality we can choose

ǫL(Q) = P1, ǫR(Q) = −P1 . (3.4)

In this case the axial and vector gauging are related by an inner automorphism. The

geometric data of this model, first obtained in [22], describe a gravitational wave in three

dimensions with a non-trivial dilaton field. The metric has a sequence of singularities close

to which it reduces to the null orbifold considered in [3]. The agreement is precise if one

compactifies the spatial direction transverse to the wave.

There is also a third class of models defined by the following embedding

ǫL(Q) = P1 , ǫR(Q) = −ᾱJ − 1

2ᾱ
K . (3.5)

These asymmetric cosets describe a class of singular three-dimensional space-times that

can be interpreted as limits of the conical space-times. In the rest of this paper we will

focus mainly on the first two classes of models and describe in detail the αJ + βK cosets

and the P1 cosets.

3.1 The Melvin and the conical space-times

Let g ∈ H4 and consider the following gauge transformation

g 7→ es(αJ+βK)ge−s(ᾱJ+β̄K) . (3.6)
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In the coordinate system (2.3) we have

(u, v, r, ϕ) 7→ (u + s(α − ᾱ), v + s(β − β̄), r , ϕ + sα) , (3.7)

where a1 + ia2 = reiϕ. There are two convenient gauge choices. If α 6= ᾱ we can fix

completely the gauge freedom setting u = 0. Alternatively we can first set ϕ = 0 and then

take into account the residual discrete identifications

(u, v) ∼
(

u + 2πk
α − ᾱ

α
, v + 2πk

β − β̄

α

)
, k ∈ Z . (3.8)

It is convenient to define the parameter η

η =
α − ᾱ

αᾱ
, (3.9)

where we are assuming that both α and ᾱ are non-zero. The metric, dilaton and two-form

fields of the model with ξ = 1 are

ds2 = dr2 +
η2r2

η2 − r2
dϕ2 − 4

η2 − r2
dv2 , B =

2η2

η2 − r2
dϕ∧ dv , Φ = ln(η2 − r2) . (3.10)

This is a three-dimensional Lorentzian space with a naked singularity and closed time-like

curves in the region r2 > η2 where the time direction is the periodic coordinate ϕ. The

model with ξ = −1 corresponds to the following smooth Euclidean space

ds2 = dr2 +
η2r2

η2 + r2
dϕ2 +

4

η2 + r2
dv2 , B =

2η2

η2 + r2
dϕ∧ dv , Φ = ln(η2 + r2) . (3.11)

When α = ᾱ the geometric data of the coset are

ds2 = −ξdx2 + dr2 +
4dv2

r2
, Φ = ln(r2) , (3.12)

with x = u/α. This metric can also be derived from eq. (3.10) and eq. (3.11) setting x = ηϕ

and taking the limit η → 0.

The space-times in eq. (3.10) and eq. (3.11) are T-dual to freely acting orbifolds of flat

space. The model with ξ = −1 is in fact easily recognized as the Melvin model [28, 33 – 36].

Let us start with a flat three-dimensional Euclidean space

ds2 = dx2 + dr2 + r2dθ2 , (3.13)

and identify the points related by the transformation (x, θ) 7→ (x + 2πR, θ + 2πγ) with

R ∈ R and γ ∈ [0, 1). We then define a new coordinate ϕ = θ − γ
Rx and perform a

T-duality along the x direction. The resulting background coincides with (3.11) if we set

η = R
γ and 2vγ = Rx̃ , where x̃ is the coordinate T-dual to x. As such the coordinate v

has radius Rv = 1
γ so that the generic Melvin background coincides with an abelian coset

of the H4 model with a compact v direction. The existence of this relation between the H4

model and the Melvin space-time was first noticed in [36].
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The model with ξ = 1 is T-dual to the conical space-time generated by a point mass

in three dimensions [27]. This is equivalent to a three-dimensional Minkowski space ds2 =

−dt2+dr2+r2dθ2 where the points related by the transformation (t, θ) 7→ (t−2πR, θ+2πγ)

are identified. The mass and angular momentum of the source are

m =
1 − γ

4πGN
, L =

R

4GN
, (3.14)

where GN is the Newton constant. In order to compare these conical space-times and the

models in eq. (3.11) we follow exactly the same steps as before, introducing a new coordinate

ϕ = θ+ γ
R t and then performing a T-duality along the t direction. The relations between the

parameters of the two models are η = R
γ , ηt̃ = 2v and v ∼ v−2π/γ, so that the background

generated by a point particle with generic mass and angular momentum coincides with an

abelian coset of the H4 model with a compact v direction of radius Rv = 1/γ.

Also the model in eq. (3.12) is T-dual to a flat three-dimensional space. To see this one

first writes the metric of the two-plane in polar coordinates and then performs a T-duality

along the angular direction. This model was discussed in [40] as a toy model to study

T-duality transformations in non-compact spaces.

As a final observation, let us stress that the abelian cosets of H4 can be related to

suitable limits of the two-dimensional charged black-hole and the three-dimensional black

string [42 – 44] or more generally to abelian cosets of models given by the product of U(1),

SU(2) and SL(2, R) WZW models. This is due to the fact that the affine algebra based on

the Heisenberg group is a contraction of the product of ŜU(2) and a time-like free boson

or of ŜL(2, R) and a space-like free boson [30].

3.2 The gravitational wave and the null orbifold

Let us consider now the second class of abelian cosets and gauge the u(1) subalgebra

generated by P1. Let g ∈ H4 and consider the gauge transformation

g 7→ esP1ge∓sP1 . (3.15)

The two choices of sign correspond respectively to the vector and axial gauging of the U(1)

current and are related by an inner automorphism. In the coordinate system (2.4) the

transformation is simply x 7→ x+s, y 7→ y∓s, so that we can fix the gauge freedom setting

x =y for the vector model and x = −y for the axial model. The background fields of the

cosets are easily obtained and describe a three-dimensional gravitational wave supported

by a dilaton [22]. For the axial gauging we have

ds2 = 2dudv + 4 tan2 u

2
dx2 , Φ = ln cos2

u

2
, (3.16)

where the result is automatically expressed in Rosen coordinates. The coordinate trans-

formation

v = V +
X2

2 sin u
, x =

X

2
cot

u

2
, (3.17)

brings the metric into Brinkmann form

ds2 = 2dudV +
X2

2 cos2 u
2

du2 + dX2 , Φ = ln cos2 u

2
. (3.18)
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The background fields for the vector gauging are related to the previous ones by u → π−u,

v → −v. The metric is singular at the points un = nπ. The Ruxux component of the

Riemann tensor of the axial model diverges at the points u2n+1 where the model is also

strongly coupled. Around these points a better description of the background geometry is

provided by the T-dual vector model.

We show now that in a neighbourhood of u = 0 the metric and the wave functions of

the P1 cosets reduce to the corresponding quantities of the null orbifold considered in [3].

In order to take the limit in a controlled way we first rescale the coordinates

(u, v, x) → (ζu, v/ζ, x/ζ), (3.19)

and then send the parameter ζ to zero. In this limit the dilaton of the axial model tends

to a constant while the metric becomes

ds2 = 2dudv + u2dx2 , ds2 = 2dudV + dX2 . (3.20)

The null orbifold is a Lorentzian orbifold of flat space, a class of models introduced

in [1]. It owes its name to the fact that the orbifold group is generated by a null Lorentz

transformation, namely a linear combination of a boost and a rotation. We start from

ds2 = 2dudV + dX2 and identify the points related by

(X,V ) ∼
(
X + 2πνu , V − 2πνX − 2π2ν2u

)
, (3.21)

where the value of the parameter ν can be set to one by a boost. The change of coordinates

X = ux , V = v − u

2
x2 , (3.22)

brings the metric into the form (3.20) with the identification x ∼ x + 2πν. Therefore in

order to have precise agreement with the geometry of the P1 coset we must compactify the

coordinate x of the latter on a circle of radius R. If we denote by iλ and iλ̄ the eigenvalues

of P1, the axial model contains only winding states with λ + λ̄ = 0 while the vector model

contains only momentum states with λ − λ̄ = 0. A discrete spectrum containing both

winding and momentum modes requires a compact x direction. In this case the operators

that survive in the spectrum have

λ =
n

R
+

wR

2
, λ̄ =

n

R
− wR

2
. (3.23)

It is this compactified coset model with radius R = 1/ζ that precisely matches the null

orbifold in the limit ζ → 0. Note that unlike the parameter ν of the null orbifold, the

radius R labels different models and cannot be set to one by a boost.

To illustrate this correspondence further let us show that the wave functions of the

states of the coset become in the limit the semiclassical wave functions of the null orbifold.

The wave function of a state in H4 with K = ip, P1 = iλ, P̄1 = iλ̄ and Casimir C is

ψp,C,λ,λ̄ =
1√

| sin u|
e
−ipv−i C

p
u−iλx+iλ̄y− i

4p [(λ+λ̄)2 cot u
2
−(λ−λ̄)2 tan u

2 ] . (3.24)
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In order to reduce this wave functions to the coset we set y = −x. In Brinkmann coordinates

the result is

ψp,C,λ,λ̄ =
1√

| sin u|
e
−ipV −i C

p
u−i p

4
tan u

2

»

X2− (λ−λ̄)2

p2

–

−i p
4

cot u
2

h

X2+ λ+λ̄
p

i2

. (3.25)

We now rescale the coordinates and take the limit ζ → 0 keeping p̃ = p/ζ finite in the

limit. Up to a shift in the value of the Casimir C the wave function becomes

ψp̃,C,n,w ∼ 1√
|u|

e
−ip̃V −i C

p̃
u−i p̃

2u

“

X+ 2n
p

”2
+ i

4p̃
w2

24
u3

. (3.26)

Following the notation of [3], the previous expression coincides with the wave function

of a state of the null orbifold with winding number w, momentum J = n and light-cone

momentum p+ = p̃/2. Moreover, u = −2x+ and V = x−/2. All the states whose wave

function is given by eq. (3.24) have p 6= 0. The wave functions of states with p = 0 are

distributions localized at the points un and can be identified with the states that live on

the singular plane crossing the tip of the two cones of the null orbifold.

It is interesting to note that this background is also the Penrose limit of the point

particle space-times, that is of the αJ + βK cosets with ξ = 1. If we set

r = η sin
u

2
, ϕ =

x

η
, v =

η2

8
(u + sin u) − t , (3.27)

the new coordinates parametrize the region r < η. In the limit η → ∞ we magnify

the neighbourhood of a null geodesic and the space-time reduces to the three-dimensional

gravitational wave discussed in this section. Although the U(1) subgroup generated by P1

and the one generated by αJ + βK with ξ = 1 are not equivalent the relation

αJ +
1

2α
K = e−

P2
α (αJ + P1)e

P2
α , (3.28)

implies that they are connected by the singular limit α → 0. This limit is the algebraic

equivalent of the Penrose limit and it is very similar to the relation between the elliptic

orbifold R × C/ZN and the null orbifold discussed in [3, 6].

As a final remark let us mention that this gravitational wave can also be obtained as

the Penrose limit of the parafermions times a time-like free boson. The background fields

of the coset SU(2)k/U(1)k × R are

ds2 = −kdt2 + k[dθ2 + tan2 θdϕ2] , Φ = ln cos2 θ , (3.29)

and if we set

u = t + θ ,
2v

k
= −t + θ ,

2x√
k

= ϕ , (3.30)

and consider the limit k → ∞ we obtain (3.16). From the point of view of the theory on

the world-sheet, the Penrose limit is a contraction of the chiral algebra. The contractions

of SU(2)k ×U(1) to H4 and of SL(2, R)k × SU(2)k to H6 were studied in detail in [10, 29].

It would be interesting to study also the P1 coset as a contraction of the chiral algebra of
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the parafermions and a time-like boson. This point of view was adopted in [39] where the

authors defined a contracted chiral algebra starting with a superposition of parafermionic

and u(1) operators whose conformal dimensions agree only in the limit. When one expands

the OPEs in a power series in the contraction parameter, the subleading difference in the

conformal weights yields additional terms that are typical for a logarithmic CFT. This

observation led the authors of [39] to conjecture that the resulting theory is a logarithmic

CFT with c = 3.

It seems worthwhile to point out that the limit so defined cannot correspond to the

geometric background described in this paper. In fact, the abelian H4 coset is certainly

not a logarithmic CFT since the dilatation operator L0 is completely diagonalisable on the

full state space. This can most easily be understood on the level of the minisuperspace

theory where L0 reduces to the Laplacian acting on a suitable space of functions. For the

coset this space coincides with the space of functions on the Heisenberg group which are

invariant under the action of the subgroup. Also, the coset Laplacian agrees with that of

the Heisenberg group up to a contribution proportional to P 2
1 . Both of these operators are

completely diagonalisable, thus proving our assertion. Presumably this property persists

in the full CFT and the correlation functions of the primary vertex operators satisfy the

standard conformal Ward identities. A non-diagonalisable term in L0 could appear if one

considers the supersymmetric version of this coset or even the supersymmetric H4 WZW

model itself. This is due to the fact that the world-sheet fermions transform in the adjoint

representations of the Heisenberg group which is not fully decomposable. A similar non-

diagonalisable term in L0 was discussed in the context of the null orbifold of the RNS

superstring [6].

3.3 The third class of models

Here we briefly describe the models that result from gauging the symmetry

g 7→ es P1 g es(ᾱJ+ K
2ᾱ ) , (3.31)

or in the coordinate system (2.3)

(u, v, a1, a2) 7→ (u + ᾱs, a1 + s, a2, v + sa2/2 + s/2ᾱ) . (3.32)

We choose the gauge a1 = 0 and set a2 = x. The background fields are

ds2 =
1

1 + ᾱx

[
2dudv − x

ᾱ
du2

]
+dx2 , B =

ᾱx

1 + ᾱx
du∧dv , Φ = log(1+ᾱx) . (3.33)

This is a curved space-time with Ricci scalar R = − 7ᾱ2

2(1+ᾱx)2
and a singularity at x =

−1/ᾱ. It follows from eq. (3.28) that this background is another limit of the conical space-

time (3.10). We first rewrite the metric (3.10) with η = 1
α + 1

ᾱ in Cartesian coordinates

a1 = r cos ϕ, a2 = r sin ϕ and set

a1 =
u

ᾱ
, a2 = x − 1

α
, v1 = −v +

u

2ᾱ
(x + η) . (3.34)

The limit α → 0 gives the background fields in eq. (3.33).
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4. The coset characters

The knowledge of the exact CFT underlying the curved backgrounds discussed in the previ-

ous section allows us to compute the spectrum of the vertex operators and their correlation

functions. When these CFTs are used to build a consistent string background, we can de-

termine both the exact spectrum of perturbative string excitations and their interactions.

The operator content of the abelian cosets of H4 can be derived from the spectrum of the

H4 model [22, 32, 10]. The spectrum of a coset conformal field theory G/H is given by

a collection of usually irreducible representations of the coset chiral algebra. Any repre-

sentation µ of the affine Lie algebra ĝ associated to G can in fact be decomposed into

representations of the affine subalgebra ĥ ⊂ ĝ belonging to the subgroup H. The resulting

branching spaces give rise to representations of the coset chiral algebra, the commutant of

ĥ in the universal enveloping algebra U(ĝ). In the following we shall describe the decom-

position of the Ĥ4 representations with respect to the two abelian subalgebras that have

been used to construct the backgrounds discussed in the previous section. For a review of

the representation theory of the affine Lie algebra Ĥ4 we refer the reader to appendix A.

4.1 The operator content of the first class of models

The characters of the first class of models can be obtained from the Ĥ4 characters in a

straightforward way. This is due to the fact that J and K are the generators of the standard

Cartan subalgebra of H4. The character formulas for the coset representations resemble

closely those appearing in the context of the two-dimensional black hole [45, 46]. We will

decompose the Ĥ4 characters with respect to the û(1)-subalgebra defined by the injection

ǫ(Q) = αJ + βK , (4.1)

with 2αβ = ξ ∈ {±1} depending on whether we are gauging a space-like or a time-like

isometry. It follows from this condition that the map ǫ is an embedding of the full current

algebra

Q(z)Q(w) =
ξ

(z − w)2
. (4.2)

Via ǫ any Ĥ4-representation µ can be interpreted as a reducible û(1)-representation and

the irreducible constituents χ
H4/U(1)
[µ, b] (q) can be determined by writing

trµ

[
qL0− c

24 z−iǫ(Q0)
]

= trµ

[
qL0− c

24 z−iαJ0 z−iβK0

]
= χH4

µ (q, zα, zβ)

=
∑

b

χ
H4/U(1)
[µ, b] (q)χU(1)

b (q, z) , (4.3)

where in the last expression we introduced the standard û(1) characters of charge b

χU(1)
b (q, z) =

q
ξ
2
b2 zb

η(q)
. (4.4)

For the continuous series of representations, eq. (4.3) leads immediately to the coset char-

acters

χ
H4/U(1)
[(0,σ,j)−ω , b0n]

(q) =
qh(0,σ,j)+ω(j+n)− ξ

2
(b0n)2

η(q)3
, ω ∈ Z , (4.5)
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where the charge b0
n is given by

b0
n = α(j + n) +

ξ

2α
ω . (4.6)

The conformal dimension of the corresponding coset representation is

h
H4/U(1)
[(0,σ,j)−ω ,b0n]

= h(0,σ,j) + ω(j + n) − ξ

2
(b0

n)2 . (4.7)

In order to obtain the characters of the discrete series we first expand χH4

(±,p,j)ω
(q, zα, zβ)

according to eq. (A.15) and then regroup the z-dependence. The resulting expression reads

χ
H4/U(1)

[(±,p,j)∓ω, b±n ]
(q) =

∞∑

m=0

(−1)m
qh(±,p,j)+

m
2

(m+2n+1)±ω(j∓n)− ξ
2
(b±n )2

η(q)3
, (4.8)

where the U(1) charges b±n are

b±n = α(j ∓ n) ± ξ

2α
(p + ω) . (4.9)

If n ≥ 0 the minimal contribution to the q-series comes from m = 0. On the contrary for

n < 0 the first few terms in the series cancel and the minimum of the exponent is reached

for a positive half-integer value of m. Altogether we end up with the conformal dimensions

h
H4/U(1)

[(±,p,j)∓ω, b±n ]
=

{
h(±,p,j) ± ω(j ∓ n) − ξ

2 (b±n )2 , n ≥ 0

h(±,p,j) ± ω(j ∓ n) − ξ
2 (b±n )2 − n , n < 0 .

(4.10)

The states of the WZW model survive the coset projection precisely when Q = Q̄.

When α 6= ᾱ it is convenient to label the states in the decomposition of a discrete repre-

sentation with the values of p, ω, n and n̄ and then use the previous constraint to fix j

j = ±ξ
p + ω

2αᾱ
± αn − ᾱn̄

α − ᾱ
. (4.11)

In a similar way we label the states in the decomposition of a continuous representation

with the values of σ, ω and of L = n− n̄. This set of quantum numbers identifies the state

uniquely, since the values of j ∈ [0, 1) and n + n̄ are given by the constraint

j + n = ξ
ω

2αᾱ
− ᾱL

α − ᾱ
. (4.12)

When α = ᾱ the constraint Q = Q̄ reduces to n = n̄ and therefore we can specify p, j,

ω and n for the states that appear in the decomposition of the discrete representations

(±, p, j)∓ω , and σ, ω, j and n for the states that appear in the decomposition of the

continuous representations (0, σ, j)−ω .

The spectrum of this class of coset models can be neatly summarised by the torus

partition function. When α 6= ᾱ we obtain

ZH4/ U(1) =

∞∑

ω=0

∫ 1

0
dp

∑

n,n̄∈Z

(∣∣∣χH4/U(1)

[(+,p,j)−ω, b+n ]
(q)

∣∣∣
2
+

∣∣∣χH4/U(1)

[(−,p,j)ω, b−n ]
(q)

∣∣∣
2
)

+
∞∑

ω∈Z

∫ ∞

0
dss

∫ 2π

0
dβ

∑

L∈Z

∣∣∣χH4/U(1)
[(0,σ,j)−ω , b0n]

(q)
∣∣∣
2

, (4.13)
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where the value of the quantum numbers that do not appear in the sums or in the integrals

is assumed to be fixed by (4.11) or (4.12). We now discuss the case ξ = −1 in more detail

in order to show the precise relation between the abelian H4 coset and the Melvin model.

Using eq. (4.5) and (4.8), the contribution of the discrete representations can be written

as

Zdiscrete
H4/ U(1) =

∑

ω∈Z

∫ 1

0
dp

∑

n,n̄∈Z

q
1
2

h

η
2
(p+ω)−n−n̄

η

i2
+ p

2
(1−p)+np

q̄
1
2

h

η
2
(p+ω)−n−n̄

η

i2
+ p

2
(1−p)+n̄p

1

[η(τ)η(τ̄ )]3

∞∑

m,m̄=0

(−1)m+m̄q
m
2

(m+2n+1)q̄
m̄
2

(m̄+2n̄+1) , (4.14)

and the contribution of the continuous representations as

Zcontinuous
H4/ U(1) =

1

[η(τ)η(τ̄ )]3

∑

ω,L∈Z

∫ 2π

0
dβ

∫ ∞

0
ds s q

s2

2
+ 1

2

h

η
2
ω−L

η

i2

q̄
s2

2
+ 1

2

h

η
2
ω+ L

η

i2

. (4.15)

We want to compare eq. (4.14) with the contribution of the twisted sectors to the partition

function of the Melvin model. The partition function of the Melvin model has been dis-

cussed in several papers [36 – 38] since it provides an interesting example of a non-compact

orbifold. The contribution of the twisted sectors can be written, setting α′ = 2,

Ztwisted
Melvin =

∑

s,t∈Z,s 6=0

∫ ∞

−∞

dl

2π
q

1
2
(l+sR/2)2 q̄

1
2
(l−sR/2)2e2πi(lR)t

∣∣∣∣∣ϑ
[
1/2 + sγ

1/2 + tγ

]
(0|τ)

∣∣∣∣∣

−2

, (4.16)

where ϑ[a, b](z|τ) is the Jacobi ϑ-function. Using the identity (A.16) we can write this

partition function in the following form which allows a simple comparison with the contri-

bution of the discrete representations in the coset partition function

Ztwisted
Melvin =

∑

s,k∈Z,s 6=0

∑

n,n̄∈Z

q
1
2

h

γ(n−n̄)+k

R
− sR

2

i2
+

{γs}
2

(1−{γs})
q̄

1
2

h

γ(n−n̄)+k

R
+ sR

2

i2
+

{γs}
2

(1−{γs})

qn{γs} q̄n̄{γs}

[η(τ)η(τ̄ )]3

∞∑

m,m̄=0

(−1)m+m̄q
m
2

(m+2n+1)q̄
m̄
2

(m̄+2n̄+1) , (4.17)

where {a} stands for the fractional part of the real number a. As explained in the previous

section the H4/U(1) model corresponds to the limit

R

γ
→ η , γ → 0 , (4.18)

of the Melvin model. In this small radius limit the momentum modes labeled by k decouple

and the discrete sum over the twisted sectors becomes an integral in a continuous variable

that can be identified with p + ω.

When γ is an irrational number, the states in a twisted sector with γs very close to an

integer are almost delocalized. The limit of these almost delocalized twisted states are the

spectral flowed continuous representations of the coset model.
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In order to reproduce the partition function of the Melvin model with a finite radius

R = ηγ, we have to compactify the v direction of the H4 model on a circle of radius

Rv = 1/γ. As a result the quantum numbers p + ω and ζ ≡ j − j̄ can only be multiples of

the compactification radius and its inverse

p + ω = sγ , ζ =
k

γ
, (4.19)

and the partition function

Zdiscrete
H4/ U(1) =

∑

s,k∈Z

∑

n,n̄∈Z

q
1
2

h

η
2
(p+ω)−n−n̄+ζ

η

i2
+ p

2
(1−p)+np

q̄
1
2

h

η
2
(p+ω)−n−n̄−ζ

η

i2
+ p

2
(1−p)+n̄p

1

[η(τ)η(τ̄ )]3

∞∑

m,m̄=0

(−1)m+m̄q
m
2

(m+2n+1)q̄
m̄
2

(m̄+2n̄+1) , (4.20)

agrees precisely with (4.17).

The partition function of the model with α = ᾱ and of the conical space-times can be

discussed along similar lines.

4.2 The operator content of the second class of models

The irreducible representations of the Heisenberg group are classified by the values of the

central element K and of the Casimir operator C. Until now we have labeled the states

in a given representation using a discrete label n related to their J eigenvalues. More

precisely the states in the representation (±, p, j) have J-eigenvalues j ∓ n, n ∈ N and

are denoted by |±, p, j;n〉 while the states in the representation (0, σ, j) have J-eigenvalues

j + m, m ∈ Z and are denoted by |0, σ, j;m〉. Instead of diagonalising the generator J ,

we can also diagonalise P1. If we do so, the states in each irreducible representation carry

a continuous label λ since the spectrum of the generator P1 is continuous. To study the

characters of the P1 coset it is natural to choose this continuous basis. The relation between

the basis of J and P1 eigenstates is quite simple

|±, p, j;λ〉 =
e
−λ2

2p

(πp)1/4

∞∑

n=0

Hn(λ/
√

p)

2
n
2

√
n!

|±, p, j;n〉 ,

|±, p, j;n〉 =

∫ ∞

−∞
dλ

e−
λ2

2p

(πp)1/4

Hn(λ/
√

p)

2
n
2

√
n!

|±, p, j;λ〉 , (4.21)

where λ ∈ R and the functions Hn(t) are the Hermite polynomials. It is easy to verify that

P1|λ, p, j〉 = iλ|λ, p, j〉. Using Mehler’s formula we can evaluate the following trace on a

representation of the horizontal subalgebra

tr(±,p,j)

(
z−iJx−iP1

)
=

∫
dλxλτ(±,p)(z, λ)χ(±,p,j)(z) . (4.22)

where

τ(−,p)(z, λ) =
1√
πp

√
1 + z

1 − z
e
−λ2

p
1−z
1+z , (4.23)
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and τ(+,p)(z, λ) = τ(−,p)(1/z, λ). Similar relations hold for the continuous representations.

In this case we can construct the states

|0, σ, j; θ〉 =
∑

m∈Z

eimθ|0, σ, j;m〉 , θ ∈ [0, 2π) , (4.24)

which are eigenstates of P1 with eigenvalue λ = s cos(β + θ). The evaluation of the trace

gives in this case

tr(0,σ,j)

(
z−iJx−iP1

)
=

1

π

∫ s

−s

dλxλ

√
s2 − λ2

∑

n∈Z

zj+n . (4.25)

In order to decompose the Ĥ4 characters with respect to the subalgebra generated by P1 we

first study the decomposition of the affine representations µ̂ with respect to the horizontal

subalgebra. This is easily done using once more eq. (A.16). For the discrete representations

we obtain

χH4

(±,p,j)∓ω
(q, z) =

∑

n∈Z

zj∓n

1 − z∓1
qh(±,p,j)±ω(j∓n)

∞∑

m=1

(−1)m+1 q
m
2

(m+2n−1)

η(q)4
(qω − qm) . (4.26)

Once the character is written in this form, we can easily read off the multiplicity of the

representation (±, p, j ∓n) of the horizontal subalgebra at each level of the affine represen-

tation. We then use this decomposition and the trace in (4.23) to evaluate the following

modified Ĥ4-character

χ̃H4

(±,p,j)∓ω
(q, z, x) ≡ tr(±,p,j)∓ω

(
qL0− c

24 z−iJ0 x−i(P1)0
)

=
∑

n∈Z

∫
dλxλ τ(±,p+ω)(z, λ)

χ(±,p,j∓n)(z)qh(±,p,j)±ω(j∓n)
∞∑

m=1

(−1)m+1 q
m
2

(m+2n−1)

η(q)4
(qω − qm) .

Finally, in order to extract the coset characters we set z = 1 and remove the contribution

of the affine u(1) character. The function τ(±,p+ω)(z, λ) is divergent for z = 1 but this

divergence can be absorbed in the normalization of the states of the non-compact U(1).

The result is

χ
H4/U(1)
[(±,p,j)∓ω,λ](q) =

∑

n∈Z

qh(±,p,j)±ω(j∓n)−λ2

2

∞∑

m=1

(−1)m+1 q
m
2

(m+2n−1)(qω − qm)

η(q)3
. (4.27)

When ω = 0 the character can be written in the simple form

χ
H4/U(1)
[(±,p,j),λ](q) =

qh(±,p,j)−λ2

2

η(q)3
. (4.28)

Following the same strategy as outlined above we obtain from the decomposition of the

continuous representations the characters

χ
H4/U(1)
[(0,σ,j)−ω ,λ](q, z, u) =

∑

n∈Z

qh(0,σ,j)−λ2

2
+ω(j+n)

η(q)3
zj+n , (4.29)
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where λ can assume the values λ = s cos θ with 0 ≤ θ < 2π. The conformal dimensions of

the coset representations are therefore

h[(±,p,j)∓ω;λ] = ±(p + ω)j +
p

2
(1 − p) − λ2

2
, (4.30)

with ω ∈ N, (λ, j) ∈ R
2, p ∈ (0, 1) and

h[(0,σ,j)−ω ;λ] = ωj +
s2 − λ2

2
, (4.31)

with ω ∈ Z, s ∈ R+, λ ∈ [−s, s], j ∈ [0, 1). The spectral flowed representations, as it is

evident from their characters, contain states with arbitrarily negative values of L0.

4.3 The operator content of the third class of models

In order to describe the spectrum of the third class of models we only have to identify the

states that survive the coset projection, since we already know the decomposition of the

H4 characters with respect to the abelian subalgebras generated by P1 and by αJ + βK.

The states of the coset belong to the representations described by the characters

χ
H4/U(1)
[(±,p,j)∓ω, λ±] χ̄

H4/U(1)

[(±,p,j)∓ω, b±n ]
, (4.32)

with p ∈ (0, 1), ω ∈ N, j ∈ R, n ∈ Z and λ± = −b±n or by the characters

χ
H4/U(1)
[(0,σ,j)ω , λ0] χ̄

H4/U(1)

[(0,σ,j)ω , b±0 ]
, (4.33)

with s ∈ R+, (ω, n) ∈ Z, j ∈ [0, 1) and λ0 = −b0
n. Here the charges b0

n and b±n are as

defined in eq. (4.6) and (4.9).

5. Interactions

The correlation functions of a coset model G/H can be expressed in terms of the correlation

functions of the G and H WZW models (see for instance [47]). When applied to the vertex

operators, the decomposition of the G representations into a sum of products of coset and

H representations gives

ΦG
g (z) =

∑

h

Φ
G/H
[g,h] (z)ΦH

h (z) , (5.1)

where ΦG
g , ΦH

h and Φ
G/H
[g,h] are respectively primary fields of the two WZW models and of

the coset model. To simplify the notation we are displaying only the chiral part of the

vertex operators. A general n-point correlator can then be written in a factorized form

〈
n∏

i=1

ΦG
gi

(zi)

〉
=

∑

hi

〈
n∏

i=1

Φ
G/H
[gi,hi]

(zi)

〉 〈
n∏

i=1

ΦH
hi

(zi)

〉
, (5.2)

from which one can extract the correlators of the coset model and in particular the two-

and three-point couplings. Since the three- and four-point correlation functions of the H4
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WZW model are known [10], we can use these results to evaluate some typical correlators

for the abelian cosets discussed in the previous sections. We restrict our attention to

correlators that do not involve spectral flowed states.

Let us denote a primary field of H4 as ΦH4

(q,n,n̄), where q stands for all the quantum

numbers necessary to specify the representation of Ĥ4 and n, n̄ keep track of the J and

J̄ eigenvalues of the field. With this notation (q, n, n̄) identifies the state with eigenvalues

j ∓ n and j ∓ n̄ if q = (±, p, j) and with eigenvalues j + n and j + n̄ if q = (0, σ, j). The

correlation functions assume a simpler form if one introduces charge variables to handle

simultaneously all the fields that belong to the same representation [48]. For fields in a

discrete representation we use a complex variable x. The monomials

βp,n(x) =
(
√

p x)n√
n!

, n ≥ 0 , (5.3)

provide a complete orthonormal basis for the space of analytic functions f(x) with measure

dσp =
d2x

π
p e−px∗x , (5.4)

where x∗ is the complex conjugate of x. We also introduce a complex charge variable x̄ ∈ C

for the anti-chiral fields. For fields in a continuous representation we consider the phases

β0,n(θ) = einθ with θ ∈ [0, 2π), n ∈ Z and use the measure dσ0 = dθ/2π. We can now

collect all the primary fields that belong to the same representation in a single field that

depends both on the worldsheet and the charge variables

ΦH4
q (z, z̄, x, x̄) =

∑

n,n̄

ΦH4

(q,n,n̄)(z, z̄)βq,n(x)βq,n̄(x̄) , (5.5)

with n, n̄ ∈ N for the discrete representations and n, n̄ ∈ Z for the continuous representa-

tions. The three-point couplings of these primary fields are given by

〈
3∏

i=1

ΦH4
qi

(xi, x̄i)

〉
= Kq1,q2,q3(x1, x2, x3)Kq1,q2,q3(x̄1, x̄2, x̄3) Cq1,q2,q3 . (5.6)

Here and in the following we leave understood the standard dependence on the insertion

points zi of the vertex operators, which is completely fixed by the Ward identities of global

conformal invariance. The explicit form of the functions Kq1,q2,q3 and Cq1,q2,q3 can be found

in [10, 29, 11].1

Let us consider first some examples of three-point couplings for the αJ +βK cosets. In

this case we need the couplings between the fields ΦH4

(q,n,n̄) that can be easily extracted from

the couplings in eq. (5.6) using the orthonormality of the functions βq,n and the quantities

Kn1,n2,n3
q1,q2,q3

≡
3∏

i=1

∫
dσqi

β∗
qi,ni

(xi)Kq1,q2,q3(x1, x2, x3) . (5.7)

1The (±, p, j) representations in the conventions of [10, 29, 11] correspond to the (∓, p, j) representations

in the conventions of the present paper.
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Consider the coupling between the coset fields [(−, p1, j1), b
−
n1

, b−n̄1
], [(−, p2, j2), b

−
n2

, b−n̄2
] and

[(+, p3, j3), b
+
n3

, b+
n̄3

], where the charges b±n are as defined in eq. (4.6) and eq. (4.9). In

the following we assume for simplicity that all the labels ni and n̄i are non-negative,

otherwise one needs the couplings of descendant fields of the H4 WZW model. When the

q labels take the previous values, the H4 coupling is non-zero only when p3 = p1 + p2 and

∆ ≡ −(j1 + j2 + j3) ∈ N. In this case we have

Kq1,q2,q3 = e−x3(p1x1+p2x2)(x2 − x1)
∆ , Cq1,q2,q3 =

1

∆!

[
γ(p3)

γ(p1)γ(p2)

]∆

, (5.8)

where γ(x) = Γ(x)
Γ(1−x) . The three-point coupling of the coset fields is then given by

〈
Φ

H4/ U(1)

[(−,p1,j1),b
−
n1

,b−n̄1
]
Φ

H4/ U(1)

[(−,p2,j2),b
−
n2

,b−n̄2
]
Φ

H4/ U(1)

[(+,p3,j3),b
+
n3

,b+n̄3
]

〉
=

1

∆!

[
γ(p1+p2)

γ(p1)γ(p2)

]∆

Kn1,n2,n3
q1,q2,q3

Kn̄1,n̄2,n̄3
q1,q2,q3

,

(5.9)

where ∆ = n1 + n2 − n3 = n̄1 + n̄2 − n̄3 and

Kn1,n2,n3
q1,q2,q3

=

√
n2!

n1!n3!

∆! (−1)n1+n3

(n2 − n3)!

pn3
2

p
n1/2
1 p

n2/2
2 p

n3/2
3

F (−n1,−n3;n2 − n3 + 1;−p1/p2) ,

(5.10)

when n2 ≥ n3 and

Kn1,n2,n3
q1,q2,q3

=

√
n1!n3!

n2!

(−1)n1+n2

(n3 − n2)!

pn3−n2
1

p
n1/2
1 p

n2/2
2 p

n3/2
3

F (−∆,−n2;n3 − n2 + 1;−p1/p2) , (5.11)

when n3 ≥ n2. Here F (a, b; c; t) is the hypergeometric function. As a second example we

consider the coupling between the coset fields [(−, p1, j1), b
−
n1

, b−n̄1
], [(+, p2, j2), b

+
n2

, b+
n̄2

] and

[(0, σ, j3), b
0
n3

, b0
n̄3

] and for simplicity we assume again that the labels ni and n̄i, i = 1, 2 are

non-negative. In this case we have a non-vanishing H4 coupling only if p1 = p2 ≡ p and

∆ ≡ −(j1 + j2 + j3) ∈ Z. Moreover

Kq1,q2,q3 = e
−px1x2− 1√

2

“

σ x2x3+σ∗ x1
x3

”

x∆
3 , Cq1,q2,q3 = e

s2

2
Σ(p) , (5.12)

where

Σ(p) = ψ(p) + ψ(1 − p) − 2ψ(1) , ψ(x) =
dlnΓ(x)

dx
. (5.13)

When these conditions are satisfied the three-point coupling in the coset model can be

written as
〈

Φ
H4/ U(1)

[(−,p,j1),b
−
n1

,b−n̄1
]
Φ

H4/ U(1)

[(+,p,j2),b
+
n2

,b+n̄2
]
Φ

H4/ U(1)

[(0,σ,j3),b0n3
,b0n̄3

]

〉
= e

s2

2
Σ(p) Kn1,n2,n3

q1,q2,q3
Kn̄1,n̄2,n̄3

q1,q2,q3
, (5.14)

where ∆ = n1 − n2 + n3 = n̄1 − n̄2 + n̄3 and

Kn1,n2,n3
q1,q2,q3

=

(
s√
2p

)n1+n2 m∑

k=0

(−1)k+n1+n2
√

n1!n2!

k!(n2 − k)!(n1 − k)!

(
2p

s2

)k

, (5.15)
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with m = min(n1, n2). Following the same procedure one can compute various other

couplings among coset fields.

Let us consider now the second class of models. The best way to compute the couplings

of the P1 coset is to first rewrite the H4 couplings in a basis of P1 and P̄1 eigenstates. To

this end we apply the change of basis in eq. (4.21) to the states

|±, p, j, x, x̄〉 =
∞∑

n,n̄=0

βp,n(x)βp,n̄(x̄)|±, p, j, n, n̄〉 . (5.16)

The result is

|±, p, j, x, x̄〉 =

∫ ∞

−∞
dλ

∫ ∞

−∞
dλ̄Gp(x, λ)Gp(x̄, λ̄)|±, p, j, λ, λ̄〉 ,

|±, p, j, λ, λ̄〉 =

∫

C

dσp

∫

C

dσ̄p G∗
p(x, λ)G∗

p(x̄, λ̄)|±, p, j, x, x̄〉 , (5.17)

where

Gp(x, λ) =
1

(πp)1/4
e−

λ2

2p
+
√

2λx− p
2
x2

, λ ∈ R , x ∈ C . (5.18)

For the continuous representations we consider the states

|0, σ, j, θ, θ̄〉 =
∑

n,n̄∈Z

β0,n(θ)β0,n̄(θ̄)|0, σ, j, n, n̄〉 , (5.19)

which are eigenstates of P1 with eigenvalue λ = s cos(θ + θ̄ + β). Once the H4 couplings

have been expressed in a basis of P1 eigenstates, the couplings of the coset fields can be

easily obtained by removing the contribution of the U(1) vertex operators and setting

λ =
n

R
+

mR

2
, λ̄ =

n

R
− mR

2
, (5.20)

if we consider the general case of the compact coset with x ∼ x + 2πR. The condition

imposed on the states by the vector gauging (λ = λ̄) and the condition imposed on the

states by the axial gauging (λ = −λ̄) arise respectively in the limit R → ∞ and R → 0.

This is of course what we expect, since the axial and the vector model are related by

T-duality. We present here just two examples of three-point couplings. The first one is

〈
Φ

H4/ U(1)

[(−,p1,j1),λ1,λ̄1]
Φ

H4/ U(1)

[(−,p2,j2),λ2,λ̄2]
Φ

H4/ U(1)

[(+,p3,j3),λ3,λ̄3]

〉
= (5.21)

1

∆!

[
γ(p3)

γ(p1)γ(p2)

]∆+ 1
2
[

p3

2p1p2

]∆

e
−

P3
i=1

λ2
i +λ̄2

i
2pi H∆(µ)H∆(µ̄) , (5.22)

where p3 = p1 + p2, ∆ ∈ N, λ1 + λ2 + λ3 = λ̄1 + λ̄2 + λ̄3 = 0 and the argument µ of the

Hermite polynomial H∆ is

µ ≡
√

λ2
1

p1
+

λ2
2

p2
− λ2

3

p3
, (5.23)
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The quantity µ̄ has exactly the same expression in terms of the barred quantities. Our

second example is

〈
Φ

H4/ U(1)

[(−,p,j1),λ1,λ̄1]
Φ

H4/ U(1)

[(+,p,j2),λ2,λ̄2]
Φ

H4/ U(1)

[(0,σ,j3),λ3,λ̄3]

〉
= (5.24)

e−
λ1λ2
2p

−λ2
3

2p
tan2 θ+

i λ3(λ1−la2)
p

tan θe−
λ̄1λ̄2
2p

− λ̄2
3

2p
tan2 θ+

i λ̄3(λ̄1−λ̄2)
p

tan θe
s2

2
Σ(p) , (5.25)

where ∆ ∈ Z, λ1 + λ2 + λ3 = λ̄1 + λ̄2 + λ̄3 = 0 and λ3 = s cos(θ + β), λ̄3 = s cos(θ̄ + β).

The vertex operators of the third class of models can be written as the product of a

chiral vertex operators of the P1 coset and an anti-chiral vertex operators of the αJ + βK

coset. The computation of their correlation functions can then be performed following the

steps already described in this section.

6. Conclusions

In this article we reported on progress in understanding various space-times arising from

gauging a one-dimensional subgroup of the Heisenberg group H4. All the models we ob-

tained are non-compact and many of them in fact exhibit time-dependence and an in-

teresting structure of curvature singularities. Building on the solution of the H4 WZW

model [10, 11], we have been able to derive exact conformal field theory results such as

spectra and correlation functions.

The specific backgrounds we discussed came in three families. In order to obtain the

first class we gauged a subgroup generated by a linear combination of the currents J and K.

This resulted in models which are T-dual to freely acting orbifolds of flat space. Depending

on the signature we recovered either the Melvin model [28] or the conical space-times that

are generated by point particles in three-dimensional gravity [27]. For the Melvin model we

showed explicitly that the coset partition function coincides with the partition functions

of a freely acting orbifold of flat space [35, 36].

The second class of models was obtained by gauging the subgroup generated by P1.

Vector and axial gauging turned out to be equivalent in this case and led to a gravitational

wave with a periodic array of singularities. While these two gaugings led to a continuous

spectrum of either momentum or winding modes, we also considered a compactified version

of the model, with a discrete spectrum of momenta and windings. We showed, both

at the level of the geometry and of the semi-classical wave functions, that this compact

model reduces in a suitable limit to the null orbifold of Minkowski space [3]. We also

briefly discussed a third class of models obtained by an asymmetric construction involving

simultaneously the two inequivalent u(1) subalgebras of H4.

Our work invites for generalizations in several directions. For a better understanding

of the models and of their singularities one should study in detail their dynamics. The

role played by the twisted sectors of the Lorentzian orbifolds has been the object of several

papers [3, 5, 6] and led to some proposals for the fate of their singularities [6], inspired

by the analogy with previous work on tachyon condensation in non-compact Euclidean

orbifolds [49]. It would be interesting to study the amplitudes of the compact P1 coset
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discussed in this paper and to compare them with the results obtained for the null orb-

ifold [3]. It would also be worth investigating the space of the possible relevant and marginal

deformations of these models, taking for instance as a starting point the current-current

deformations of the H4 WZW model discussed in [10], since the cosets considered here are

the boundary points of such deformations.

Additional insights on the physical properties of these space-times may be gained by

the analysis of the dynamics of open strings. Although in the present work we restricted

ourselves to the closed string sector, the entire analysis could be extended to cover open

strings and D-branes. In fact the boundary CFTs associated with the maximally symmetric

branes of the Heisenberg group were solved in [11] and therefore the corresponding spec-

tra and correlation functions are known. Together with the formalism developed for the

description of D-branes in asymmetrically gauged WZW models [50], these results should

lead to a clear picture of open strings in the abelian H4 cosets.

Finally, it remains to say that the insights and techniques gained and developed here

can also be used to study more complicated, non-abelian cosets based on the Heisenberg

group. This concerns in particular its diagonal cosets which have been shown to correspond

to non-maximally symmetric plane waves in four dimensions [24]. We shall return to this

class of models in a forthcoming publication [26].
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A. The group H4 and its representations

The Lie algebra of the group H4 has four generators that satisfy the following commutation

relations

[P1, P2] = K , [J, P1] = P2 , [J, P2] = −P1 , (A.1)

or, in terms of the raising and lowering operators P± = P1 ± iP2,

[P+, P−] = −2iK , [J, P±] = ∓iP± . (A.2)

All generators are anti-hermitian and the invariant bilinear form is

〈P+, P−〉 = −2 , 〈J,K〉 = −1 . (A.3)

The corresponding current algebra is

P+(z)P−(w) = − 2

(z − w)2
− 2iK

z − w
, J(z)K(w) = − 1

(z − w)2
,

J(z)P±(w) = ∓ iP±

z − w
, (A.4)
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or, in terms of the modes,

[P+
n , P−

m ] = −2nδn+m,0−2iKn+m , [Jn, P±
m ] = ∓iP±

n+m , [Jn,Km] = −nδn+m,0 . (A.5)

The energy momentum tensor

T = −1

4

[
P+P− + P−P+

]
− JK +

K2

2
, (A.6)

generates a Virasoro algebra with central charge c = 4.

There are three classes of irreducible unitary representations of the group H4 [22]:

two families of so-called discrete series representations (±, p, j) (with p > 0 and j ∈ R)

and one family of continuous series representations (0, σ, j) (with σ = seiβ, s ≥ 0, 0 ≤
β < 2π and j ∈ [0, 1)). All these representations are infinite dimensional and their weight

content is clearly displayed by their characters χ(z, u) = tr[z−iJu−iK ]. The discrete series

representations (±, p, j) are constructed respectively from a highest and a lowest weight

χ(+,p,j)(z, u) =
∑

n≥0

zj−n up =
zj up

1 − 1/z

χ(−,p,j)(z, u) =
∑

n≥0

zj+n u−p =
zj u−p

1 − z
.

(A.7)

The Casimir operator C = −1
2(P+P− + P−P+) − 2JK assumes the values C = p(1 ± 2j)

on these representations. The continuous series representations (0, σ, j) possess neither a

highest nor a lowest weight state and the generator K acts trivially on them so that their

characters are simply given by

χ(0,σ,j)(z, u) =
∑

n∈Z

zj+n . (A.8)

The additional label σ gives the value of the Casimir, C = s2.

We now review the representation theory of the affine Lie algebra Ĥ4. The simplest

class of representations of Ĥ4 is generated by the action of all the negative modes on the

unitary representations of the horizontal subalgebra. These Verma modules turn out to

be irreducible. Let us recall that the Cartan subalgebra of Ĥ4 is generated by the current

zero modes J0 and K0 and by the Virasoro generator L0. Following our prescription for

the horizontal subalgebra we thus introduce the character of a representation µ as follows,

χĤ4
µ (q, z, u) = trµ

[
qL0− c

24 z−iJ0u−iK0

]
. (A.9)

Their explicit form is easily derived

χĤ4

(+,p,j)(q, z, u) =
qh(+,p,j)− 1

12 zj up

(1 − z−1)η(q)2
∏∞

n=1(1 − zqn)(1 − z−1qn)

(
|q|−1 > |z| > 1

)

χĤ4

(−,p,j)(q, z, u) =
qh(−,p,j)− 1

12 zj u−p

(1 − z)η(q)2
∏∞

n=1(1 − zqn)(1 − z−1qn)

(
|q| < |z| < 1

)

χĤ4

(0,σ,j)(q, z, u) =
qh(0,σ,j)− 1

12
∑

n∈Z
zj+n

η(q)2
∏∞

n=1(1 − zqn)(1 − z−1qn)
=

qh(0,σ,j)

η(q)4

∑

n∈Z

zj+n . (A.10)
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We will refer to the modules (±, p, j) and (0, σ, j) as standard representations. Furthermore,

we restrict the range of the label p of the (±, p, j) representations to the interval (0, 1).

The conformal weights of the ground states transforming in the representations (±, p, j)

and (0, σ, j) are given by

h(±,p,j) =
p

2
(1 − p) ± pj , h(0,σ,j) =

s2

2
. (A.11)

These value agree with the eigenvalue of the “improved” Casimir operator 1
2 (C + K2) that

appears in the quantum corrected energy momentum tensor.

In addition to the standard representations, Ĥ4 also admits representations which

in some loose sense can be referred to as twisted highest weight representations. Their

construction rests on the observation that the Ĥ4 current algebra (A.5) allows for a spectral

flow automorphism which acts on the modes as (see [10] for instance)

Ωω(P±
n ) = P±

n∓ω Ωω(Jn) = Jn Ωω(Kn) = Kn + iωδn0 . (A.12)

From this definition one readily derives the action

Ωω(Ln) = Ln − iωJn (A.13)

on the Virasoro modes.

Given any representation µ implemented on a space Hµ via the map ρµ : Ĥ4 →
End(Hµ) one can define a new representation µω which acts on the same space. The new

representation µω is implemented through the concatenation ρµω = ρµ ◦ Ω−ω. In view of

its construction it is termed spectral flow representation. The previous relations, (A.12)

and (A.13), imply a simple formula for the characters. Indeed, it is straightforward to

relate the character of µω to that of the unflowed representation µ. A simple algebraic

manipulation within the trace implies the following formula for their characters

χĤ4
µω

(q, z, u) = u−ω χĤ4
µ (q, zq−ω, u) . (A.14)

In order to simplify the notation we identify the label µω=0 with µ whenever there is no

chance of confusion.

In contrast to the case of affine Lie algebras based on compact real forms of finite

dimensional semisimple Lie algebras the spectral flow representations of Ĥ4 are not equiv-

alent to the ordinary highest weight representations introduced before. Instead as can be

seen from formula (A.14) they allow to extend the range of the values of p from the interval

(0, 1) to the full real axis.

There is an alternative expression for the characters of the discrete series which we

used repeatedly in our derivation of the coset characters. We can write

χĤ4

(±,p,j)∓ω
(q, z, u) = u±(p+ω) 1

η(q)4

∑

n∈Z

zj∓n
∞∑

m=0

(−1)mqh(±,p,j)±ω(j∓n)+ m
2

(m+2n+1) , (A.15)
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where ω ∈ N. With the upper sign this formula is valid for |q|−ω < |z| < |q|−1−ω while it is

valid for |q|1+ω < |z| < |q|ω if we choose the lower sign. This expression for the characters

follows from the identity

1

(1 − z)
∏∞

n=1(1 − zqn)(1 − z−1qn)
=

∑

n∈Z

zn
∞∑

m=0

(−1)m
q

m
2

(m+2n+1)+ 1
12

η(q)2
, (A.16)

where |q| < |z| < 1 is assumed. This relation, originally proved in [45], can also be derived

in the following way [46]. We first write

1

(1 − z)
∏∞

n=1(1 − zqn)(1 − z−1qn)
=

∑

l∈Z

fl(q) zl , (A.17)

and then multiply both sides with z−n−1 and perform an integral along a contour contained

in the interior of the unit circle. On the right hand side of (A.17) we simply obtain the

coefficient fn(q) while on the left hand side we pick up the residues from the poles at

z = qm, m > 0. The result

fn(q) =

∞∑

m=1

(−1)m−1 q−mn+ 1
2
m(m−1)+ 1

12

η(q)2
=

∞∑

m=0

(−1)m
q

1
2
(m+1)(m−2n)+ 1

12

η(q)2
, (A.18)

coincides with (A.16) after the shift m → m + 2n.
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